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1 Introduction

This document provides proofs for conditioning numbers and their bounds for
Linear Least Squares Problem as stated in Chapter 18 of Numerical Linear
Algebra by Trefethen and Bau [6]. When providing these proofs I rely heavily
on work by Stewart [5]. I adapt the results from [5] to match the ones in [6] for
perturbations of A and provide proofs similar to those in [5] for perturbations of
b. [6] provides concise proofs for perturbations of b, while here I provide slightly
different take on proving the same facts.

The document is organized as follows. Section 1 summarizes the purpose and
the intention behind the document. It also presents the structure of the doc-
ument. Section 2 introduces linear least squares problem and the definition of
condition number. It also summarizes the results regarding the condition num-
bers that are analyzed here. These results are then proven in Section 3. There
are four different condition numbers that are analyzed in Section 3: two condi-
tion numbers arising from the perturbations of b and their effect on the outputs
x and y and two more condition numbers describing the effect of perturbations
of A to x and y. The proofs regarding the perturbations of A are preceded with
some preliminary theorems and lemmas with accompanying proofs. Section 4
is the Appendix. The Appendix contains some minor proofs that are used in
Section 3 that might be of interest to a novice student like me. The difference
between the preliminary proofs in Section 3 and the ones in the Appendix is
that the former are more substantial results that are necessary to fully under-
stand the effect of perturbations of A on the outputs whereas the latter are
more common results probably familiar to a mature student of Linear Algebra.

This document was motivated by my desire to fully understand the results
regarding condition numbers presented in Chapter 18 of [6]. Often the proofs
presented here will be more verbose than is perhaps necessary and some minor
facts will be proven in detail. This is because I wanted to understand the
derivations fully so I elaborate on a lot of things in a way I explained them to
myself. This comes at a cost of lack of conciseness throughout the document.
My ideal was to provide proofs that go all the way ’to the bottom’ so to speak
to the very basics of linear algebra used in them. I do not provide proofs for
everything though as that is harder than I would like but I try to at least
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mention why something is true so that the interested reader can follow up using
the right keywords or I quote a source that provides a detailed proof.

2 Condition Numbers

2.1 Linear Least Squares Problem

Here is the statement of linear least squares problem (see [6]):
Given A ∈ Cm×n of full rank, m ≥ n, b ∈ Cm, find x ∈ Cn such that

‖b−Ax‖2 is minimized.
The solution x and the corresponding point y = Ax that is closest to b in

range(A) are given by:

x = A+b y = Pb (1)

where A+ ∈ Cn×m is the pseudoinverse of A and P = AA+ ∈ Cm×m is the
orthogonal projector onto range(A) (see [6], Lecture 11 and Appendix, Lemma
6).

We are going to observe four condition numbers. Our inputs are A, b and
solutions are x and y. We shall observe how x changes with perturbations of b
and then with perturbations of A separately. We shall do the same for y.

2.2 Definition of the Relative Condition Number

The definition is taken from [6].

Definition 2.1. Relative Condition Number. Let f : X → Y be a function
from a normed vector space X of data to a normed vector space Y of solutions.
Let δx denote a small perturbation of x and δf = f(x+ δx)− f(x).

We define relative condition number κ = κ(x) as:

κ = lim
δ→0

sup
‖δx‖≤δ

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
(2)

Relative condition number captures some properties of how the function f
behaves when its input x ∈ X is perturbed. κ depends on the input values, i.e.
it is not the same across different input values.

2.3 Results

In this document we observe condition numbers for linear least squares problem.
This section will introduce the results we will prove later on.

First we need to introduce three parameters:

• κ(A) is the condition number of A:

κ(A) = ‖A‖2‖A+‖2= σ1/σn (3)

2



where σ1 is the largest singular value of A and σn is the smallest nonzero
singular value of A.

• Angle θ as a measure of the closeness of fit:

θ = cos−1(‖y‖2/‖b‖2) (4)

• The last parameter is η:

η = ‖A‖2‖x‖2/‖y‖2= ‖A‖2‖x‖2/‖Ax‖2 (5)

It should be noted that any norm could be used to define a condition number.
However, in this document we use the 2-norm, same as [6].

And now onto the results:

Theorem 1. (Theorem 18.1 from [6]) Let b ∈ Cm and A ∈ Cm×n of full rank
be fixed. The least squares problem has the following 2-norm relative condition
numbers describing the sensitivities of y and x to perturbations in b and A:

y x

b 1
cos θ

κ(A)
η cos θ

A κ(A)
cos θ κ(A) + κ(A)2 tan θ

η

The results in the first row are exact, being attained for certain perturbations
δb, and the results in the second row are upper bounds.

3 Proofs and Derivations

3.1 Sensitivity of y to Perturbations in b

We start with the simplest of the results: relative condition number for changes
in y depending on perturbations of b.

y + δy = P (b+ δb) (6)

We know that y = Pb, orthogonal projection of b into range(A). We can
write:

δy = Pb− Pδb− y = Pδb (7)

Let us bound the ratio of the relative change of y with respect to the relative
change of b:
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‖δy‖2
‖y‖2

/
‖δb‖2
‖b‖2

=
‖Pδb‖2
‖y‖2

/
‖δb‖2
‖b‖2

≤ ‖b‖2
‖y‖2

‖P‖2‖δb‖2
‖δb‖2

(8)

Above we use the fact that ‖Pδb‖2≤ ‖P‖2‖δb‖2 which arises from the fact
that matrix norm ‖·‖2 is a norm induced on vector norm and the properties of
induced norms (see pages 18, 19 in [6]).

P is an orthogonal projector and it only has singular values 0 and 1 (see
proof of Theorem 6.1. in [6]) which means that ‖P‖2= 1, since 2-norm of a
matrix corresponds to its highest singular value. Hence we have:

‖δy‖2
‖y‖2

/
‖δb‖2
‖b‖2

≤ 1

cos θ
(9)

Equation (9) holds no matter how small we make ‖δb‖2. Also, no matter
how small the bound δ on ‖δb‖2 is we can always choose a δb which achieves
the equality in (9). The equality is achieved for any δb that is in range of P
because in that case we have ‖Pδb‖2= ‖δb‖2:

‖δy‖2
‖y‖2

/
‖δb‖2
‖b‖2

=
‖Pδb‖2
‖y‖2

/
‖δb‖2
‖b‖2

=
‖δb‖2
‖y‖2

/
‖δb‖2
‖b‖2

=
1

cos θ
(10)

We can obtain a sufficiently small δb in range(P ) by selecting any vector a in
range(A) = range(P ) and multiplying it by factor δ/‖a‖2. Then δb = a ·δ/‖a‖2
and ‖δb‖2= δ ≤ δ.

Bearing all this in mind we can write:

κb→y =
1

cos θ
(11)

3.2 Sensitivity of x to Perturbations in b

First we give the bounds on relative perturbation of x depending on the pertur-
bation of b and then we proceed to give the condition number. We observe the
following:

x+ δx = A+(b+ δb) (12)

From there we get an expression for δx:

δx = A+b+A+δb− x = A+δb (13)

We can write the following for ‖x‖2:

‖x‖2= η‖Ax‖2/‖A‖2= η‖y‖2/‖A‖2 (14)

From equations (13) and (14) we get:
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‖δx‖2
‖x‖2

=
‖A+δb‖2

η‖y‖2/‖A‖2
≤ ‖A

+‖2‖δb‖2‖A‖2
η‖y‖2

=
κ(A)‖δb‖2
η‖y‖2

(15)

In order to get a bound that can help us obtain the relative condition number
(2) we divide both sides of the inequality by ‖δb‖2/‖b‖2. We get:

‖δx‖2
‖x‖2

/
‖δb‖2
‖b‖2

≤ κ(A)‖b‖2
η‖y‖2

=
κ(A)

η cos θ
(16)

The above equation is true for all ‖δb‖2, no matter how small. There is
also always such a value of δb for which the equality is achieved: any δb for
which ‖A+δb‖2= ‖A+‖2‖δb‖2. We know that there exists vector v for which
‖A+v‖2= ‖A+‖2‖v‖2. We can choose δb = v · C where C is some sufficiently
small constant, similar to what we did in Section 3.1.

Since we can find a perturbation of b for which equality in (16) is achieved
no matter how small the bound on the norm of the perturbation of b is, the
condition number for changes in x invoked by perturbations in b is equal to:

κb→x =
κ(A)

η cos θ
(17)

3.3 Preliminaries for Analysis of Perturbations of A

3.3.1 Convergent Matrices

The definition of convergent matrix and the related theorems and proofs are
taken from an online lecture on convergent matrices [2].

Definition 3.1. Convergent Matrix Matrix A ∈ Cn×n is said to be convergent
if

lim
k→∞

Ak = 0 (18)

Theorem 2. Matrix A ∈ Cn×n is convergent iff |λi|< 1, ∀λi eigenvalues of A.

Proof. Each matrix A ∈ Cn×n can be written in Jordan canonical form (for
proof see [1]):

A = S−1JS (19)

where J is a diagonal block matrix where each block looks like this:

JB =


λi 1 0

. . .
. . .

. . . 1
0 λi

 (20)

with λi being an eigenvalue of A.
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We will use the Jordan canonical norm to prove the theorem.
Let us first prove that if A is convergent that |λi|< 1 for all its eigenvalues

λi.
We can write:

Ak = S−1JkS (21)

From there we see that for A to be convergent J must be convergent. J
consists of Jordan blocks and Jk consists of powers of Jordan blocks JkB which
means that each J is convergent iff each Jordan block is convergent. We will
observe a single Jordan block.

JkB = (λi · I +Nl)
k (22)

where

Nl =


0 1 · · · 0
...

. . .
...

... 1
0 · · · · · · 0


l×l

(23)

Nl is a nilpotent matrix meaning Np
l = 0 for some p ≤ l with l being number

of rows and columns of the Jordan block associated with Nl.
Let us expand the expression above using the binomial theorem:

JkB =

k∑
j=0

(
k

j

)
λjiN

k−j
l =

k∑
j=k−p+1

(
k

j

)
λjiN

k−j
l (24)

All the powers of Nk−j
l where k− j 6= 0 have 0s on the diagonal. Hence the

only values on the diagonal of JkB are λki . We know that all the entries in JkB
must go to 0 as k →∞, so λki →∞ too. This only happens if |λi|< 1. Thus we
have proven the first direction of the theorem: if matrix A is convergent, then
all for all its eigenvalues λi, |λi|< 1.

The second direction is proving that |λi|< 1 ⇒ JB (and thus J and A) is
convergent.

We can write out the expression for JkB in slightly differently from (24). The
following is true as well:

JkB =

k∑
j=0

(
k

k − j

)
λk−ji N j

l =

p−1∑
j=0

(
k

k − j

)
λk−ji N j

l (25)

For limk→∞ JkB = 0 to be true it must be the case that
(
k
k−j
)
λk−ji → 0 for

j = 0, 1, ..., p− 1 when k →∞ because those are the sum parts where N j
l 6= 0.

We can write:
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|
(

k

k − j

)
λk−ji |= | k!λk

(k − j)! j!λj
|≤ |k

jλk

j!λj
| (26)

The only part of the right side of the inequality above that depends on k is
|kjλk|= kj |λ|k. If we prove that that term goes to 0 when k →∞ we are done.

We can apply the logarithm on the term:

lim
k→∞

log kj |λi|k = lim
k→∞

j log k+k log |λi| = lim
k→∞

k(j
log k

k
+log|λi|) = −∞ (27)

Above we used limk→∞
log k
k = 0 and the fact that |λi|< 1⇒ log|λi|< 0.

From (27) we infer limk→∞ kj |λi|k= 0 for j = 0, ..., p− 1. We have:

∀j = 0, ..., p− 1, lim
k→∞

kj |λi|k= 0⇒ ∀j = 0, ..., p− 1, lim
k→∞

|
(

k

k − j

)
λk−ji |= 0

⇒ lim
k→∞

JkB = 0

(28)

This applied on all the blocks of matrix J proves it is convergent and by
extension so is matrix A. This finishes the proof in the second direction.

Corollary 2.1. If ‖A‖< 1 for any norm ‖·‖ induced on a vector norm then A
is a convergent matrix.

Proof. Let λ1 be an eigenvalue of A with largest absolute value. By the defini-
tion of the eigenvalues we know that there exists a vector v such that:

Av = λ1v ⇒ ‖Av‖= |λ1|‖v‖≤ ‖A‖‖v‖⇒ ‖λ1‖≤ ‖A‖< 1 (29)

Since λ1 is the biggest eigenvalue in absolute value we have |λi|< 1 for all
eigenvalues λi of A. By Theorem 2 A is a convergent matrix.

3.3.2 Sufficient Condition for Nonsingular Perturbations

These proofs were taken, with small adaptations from videos [2] and [3].

Lemma 1. Let E ∈ Cn×n be a matrix such that ‖E‖< 1, where ‖·‖ denotes
any subordinate/induced matrix norm. Then I + E is invertible and:

1. (I + E)−1 = I − E + E2 − E3 + · · ·+ (−1)kEk + · · ·

2. ‖(I + E)−1‖≤ 1/(1− ‖E‖)

3. ‖I − (I + E)−1‖≤ ‖E‖
1−‖E‖
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Proof. ‖E‖< 1 ⇒ limk→∞Ek = 0 by Corollary 2.1. This in turn implies by
Theorem 2 that |λi|< 1,∀i = 1, 2, ..., n, where λi is an eigenvalue of E.

Eigenvalues of I + E are 1 + λi,∀i = 1, 2, · · · , n (see Appendix, Lemma 3).
We have:

|1 + λi|≥ 1− |λi|> 0,∀i = 1, 2, ..., n (30)

Since all the eigenvalues of I + E are bigger than 0, I + E is non-singular.
Note that:

(I + E)(I − E + E2 − · · ·+ (−1)kEk) = I + (−1)kEk+1 (31)

Since I + E is non-singular we can write:

I − E + · · ·+ (−1)kEk = (I + E)−1 + (I + E)−1(−1)kEk+1 (32)

Since E is convergent for k →∞ we have:

∞∑
i=0

(−1)iEi = (I + E)−1 (33)

which proves 1.
Let us observe the norm of the inverse:

‖(I + E)−1‖≤
∞∑
i=0

|(−1)i|‖E‖i=
∞∑
i=0

‖E‖i= 1

1− ‖E‖
(34)

which proves 2. The final step was calculated using the formula for the sum
of a geometric series.

Next we prove 3.

(I + E)(I + E)−1 = I (35)

I − (I + E)−1 = E(I + E)−1 (36)

‖I − (I + E)−1‖≤ ‖E‖‖(I + E)−1‖≤ ‖E‖
1− ‖E‖

(37)

Theorem 3. Let A be non singular and suppose that

‖A−1‖‖E‖< 1. (38)

Then A+ E is nonsingular and:

‖(A+ E)−1‖≤ ‖A
−1‖
γ

(39)

and
‖(A+ E)−1 −A−1‖

‖A−1‖
≤ κ(A)

γ

‖E‖
‖A‖

(40)
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where κ(A) = ‖A‖‖A−1‖ and γ = 1− ‖A−1‖‖E‖> 0.

Proof. Since A is nonsingular we can write A+E = A(I+A−1E). By Theorem
condition ‖A−1E‖≤ ‖A−1‖‖E‖< 1. This implies, by Lemma 1 that (I+A−1E)
is nonsingular. Since A+ E is a product of two nonsingular matrices, it is also
nonsigular. Let us look at the norm of (A+ E)−1:

‖(A+ E)−1‖= ‖(I +A−1E)−1A−1‖≤ ‖A−1‖‖(I +A−1E)−1‖ (41)

By Lemma 1, part 3. we get:

‖(A+ E)−1‖≤ ‖A−1‖
1− ‖A−1E‖

≤ ‖A−1‖
1− ‖A−1‖‖E‖

=
‖A−1‖
γ

(42)

We have proven the first part of the Theorem. Now onto the second part:

(A+E)−1 −A−1 = (I +A−1E)−1A−1 −A−1 = ((I +A−1E)−1 − I)A−1 (43)

‖(A+ E)−1 −A−1‖≤ ‖A−1‖‖I − (I +A−1E)−1‖≤ ‖A−1‖ ‖A
−1E‖

1− ‖A−1E‖
(44)

‖(A+ E)−1 −A−1‖
‖A−1‖

≤ ‖A−1E‖
1− ‖A−1E‖

≤ ‖A−1‖‖E‖
1− ‖A−1E‖

≤ ‖A−1‖‖E‖
1− ‖A−1‖‖E‖

(45)

‖(A+ E)−1 −A−1‖
‖A−1‖

≤ κ(A)

γ

‖E‖
‖A‖

(46)

3.3.3 Reduced Form

We are going to be using 2-norm when calculating the condition numbers. 2-
norm is unitarily invariant, meaning it does not change when a vector or matrix
is multiplied by a unitary matrix. To make our calculations simpler we will use
a so-called reduced form of A in our proofs. In this section we introduce the
necessary terminology and various relationships between A in reduced form and
its perturbed version B.

We know that every matrix has a singular value decomposition:

A = UΣV ∗ (47)

where U and V are unitary matrices and Σ is a diagonal matrix with singular
values σi ≥ 0 on the diagonal. We know:

‖A‖2= ‖Σ‖2= σ1 (48)
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where σ1 = maxi σi.
The reduced form of A is:

U∗AV = Σ =

(
A11 0
0 0

)
(49)

where A11 is a diagonal matrix with nonzero elements on the diagonal. It is
the part of Σ with nonzero singular values on the diagonal.

In [6] assumption is made that A has full rank. We follow that assumption
in this document. When A has full rank reduced form of A becomes:

U∗AV =

(
A1

0

)
(50)

Here A1 is a diagonal matrix with all non-zero diagonal entries.
We are observing perturbations of A and the effect they have on the solutions

of the least squares problem. We will have to deal with matrix B = A+E where
E represents the perturbations. In the reduced form E becomes:

U∗EV =

(
E1

E2

)
. (51)

And B becomes:

U∗BV =

(
B1

B2

)
=

(
A1 + E1

E2

)
.

In the rest of the document we will assume A and B are already in the
reduced form. Since we are working with a unitarily invariant norm, our results
can be generalized to the original, non-reduced matrices.

Next we list several facts that result from the use of the reduced form of A

that will be used later in the document. We write b =

(
b1
b2

)
where b1 contains

the first n entries of b and b2 contains the remaining m− n entries.

1. The pseudoinverse of the reduced form of A is:

A+=
(
A−1

1 0
)
. (52)

This can easily be confirmed by verifying the four Moore-Penrose condi-
tions for the pseudoinverse.

2. y=

(
b1
0

)
:

y = Pb = P

(
b1
b2

)
= AA+

(
b1
b2

)
=

(
In×n 0

0 0

)(
b1
b2

)
=

(
b1
0

)
(53)
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3. ‖A+‖2=‖A−1‖2. Let us prove this. We write x =

(
x1
x2

)
:

A+x =
(
A−11 0

)(x1
x2

)
= A−11 x1 (54)

‖A+x‖2
‖x‖2

=
‖A−11 x1‖2√
‖x1‖22+‖x2‖22

≤ ‖A
−1
1 x1‖2
‖x1‖2

≤ ‖A−11 ‖2 (55)

Since (55) holds for all x we have ‖A+‖2≤ ‖A−11 ‖2.

We also have:

‖A−11 ‖2= max
‖x‖2=1

‖A−11 x‖2= max
‖x‖2=1

‖A+

(
x
0

)
‖2≤ max

‖y‖2=1
‖A+y‖2= ‖A+‖2

(56)

Which leads us to:

‖A−1‖2≤ ‖A+‖2 ≤ ‖A−1‖2⇒
⇒ ‖A+‖2= ‖A−1‖2

(57)

4.
b1=A1x x=A−1

1 b1 (58)

Proof:

Ax =

(
A1

0

)
x =

(
A1x

0

)
= y =

(
b1
0

)
⇒ A1x = b1 ⇒ x = A−11 b1

(59)

3.3.4 Bounds on Error Components

Here we give some bounds regarding the error term E and its components. We
can write E1 =

(
In 0

)
E and E2 =

(
0 Im−n

)
E. From there we get:

‖E1‖2≤ ‖
(
In 0

)
‖2‖E‖2= ‖E‖2 (60)

and similarly:

‖E2‖2≤ ‖E‖2. (61)

We use the fact that ‖
(
In 0

)
‖2= ‖

(
0 Im−n

)
‖2= 1. Here is a quick proof:

We know that
(
In 0

)(b1(n×1)
0

)
= b1 and that ‖

(
b1
0

)
‖2= ‖b1‖2. Therefore

we have ‖
(
In 0

)
‖2≥ 1. We also know that

(
In 0

)( b1(n×1)
b2(m−n×1)

)
= b1 which

means ∀b, ‖
(
In 0

)(b1
b2

)
‖2= ‖b1‖2≤ ‖b‖2, so we have ‖

(
In 0

)
‖2≤ 1. Tying

it together we get ‖
(
In 0

)
‖2= 1. Similarly we can prove ‖

(
0 Im−n

)
‖2= 1.
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3.3.5 Pseudoinverse of

(
I
F

)
(
I
F

)
m×n

has full rank because it contains an identity matrix In×n. From [6]

we know that the pseudoinverse of a matrix A ∈ Cm×n, m ≥ n, of full rank
is A+ = (A∗A)−1A∗. This can also be proven by verifying Moore-Penrose

conditions for the pseudoinverse. By applying this to

(
I
F

)
we get:(

I
F

)+

= (I + F ∗F )−1
(
I F ∗

)
(62)

3.3.6 B+ Decomposition

Theorem 4. Let B = A+E where A ∈ Cm×n is a full rank matrix and m > n.
Let E be such that ‖A+‖‖E1‖< 1. Then

B+ = B−11

(
I
F2

)+

where F2 = E2B
−1
1 .

Proof.

B = A+ E =

(
A1

0

)
+

(
E1

E2

)
=

(
B1

E2

)
where B1 = A1 + E1.
By Theorem 3 and condition ‖A+‖2‖E1‖2= ‖A−11 ‖2‖E1‖2< 1 (see expres-

sion (57)) B1 is nonsingular so we can write:

B =

(
I

E2B
−1
1

)
B1 =

(
I
F2

)
B1

We can prove that B+ = B−11

(
I
F2

)+

is pseudoinverse of B by proving it sat-

isfies the four Moore-Penrose conditions for pseudoinverse. In the calculations

below we use expression (62) for

(
I
F2

)+

in part 4.

1. B+BB+ = B−11

(
I
F2

)+(
I
F2

)
B1B

−1
1

(
I
F2

)+

= B−11

(
I
F2

)+

= B+

2. BB+B =

(
I
F2

)
B1B

−1
1

(
I
F2

)+(
I
F2

)
B1 =

(
I
F2

)
B1 = B

3. (BB+)∗ = (

(
I
F2

)
B1B

−1
1

(
I
F2

)+

)H =

(
I
F2

)(
I
F2

)+

=(
I
F2

)
B1B

−1
1

(
I
F2

)+

= BB+
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4. (B+B)∗ = (B−11

(
I
F2

)+(
I
F2

)
B1)∗ =

= (B−11 (I + F ∗2 F2)−1
(
I F ∗2

)( I
F2

)
B1)∗ =

= (B−11 (I + F ∗2 F2)−1(I + F ∗2 F2)B1)∗ =
= I∗ = I = B+B

3.4 Sensitivity of y to Perturbations in A

We can write:

y + δy = PBb→ δy = (PB − PA)b (63)

where PA is an orthogonal projector to the column space of A and PB is an
orthogonal projector to the column space of B.

(64)‖δy‖2 = ‖(PB − PA)b‖2 ≤ ‖PB − PA‖2‖b‖2 = ‖PB − PA‖2
‖y‖2
cos θ

Let us find a bound for ‖PB − PA‖2 now. The derivation of the bound was
taken from [5].

We are going to limit our analysis to perturbations for which ‖A−1E‖2< 1.
We will be able to use these results to bound the condition number because the
condition number is defined in the limit, when ‖E‖2→ 0 and thus ‖A−1E‖2
goes to 0. We also know that ‖A−1E‖2< 1⇒ ‖A−1E1‖2< 1 from Section 3.3.4.

We have proven that when ‖A−1E1‖2< 1 that B1 = A1 +E1 is nonsingular
(Theorem 3). Thus we can write:

B =

(
B1

E2

)
=

(
I

E2B
−1
1

)
B1 =

(
I
F2

)
B1 (65)

with F2 = E2B
−1
1 .

We use the fact that an orthogonal projector onto a column space of a matrix
B is PB = BB+ where B+ is the pseudoinverse of B (see [5], Introduction and
Lemma 6 in the Appendix).

We have:

PB = BB+ =

(
I
F2

)
B1B

−1
1

(
I
F2

)+

=

(
I
F2

)
(I + F ∗2 F2)−1

(
I F ∗2

) (66)

We are using the reduced form of A so we have:

PA = AA+ =

(
A1

0

)(
A−11 0

)
=

(
I 0
0 0

)
(67)
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We have:

PB − PA =

(
(I + F ∗2 F2)−1 − I (I + F ∗2 F2)−1F ∗2
F2(I + F ∗2 F2)−1 F2(I + F ∗2 F2)−1F ∗2

)
(68)

We know that singular values σi(PB − PA) squared are equal to eigenvalues
of (PB − PA)∗(PB − PA) = (PB − PA)2.

In order to get the expression for (PB−PA)2 in (71) we used the substitutions
(69) and (70) as needed:

(I+F ∗2 F2)−1− I = (I− (I+F ∗2 F2))(I+F ∗2 F2)−1 = −F ∗2 F2(I+F ∗2 F2)−1 (69)

(I + F ∗2 F2)−1 − I = (I + F ∗2 F2)−1(I − I − F ∗2 F2) = −(I + F ∗2 F2)−1F ∗2 F2 (70)

(PB − PA)2 =

(
F ∗2 F2(I + F ∗2 F2)−1 0

0 F2(I + F ∗2 F2)−1F ∗2

)
(71)

Since (PB − PA)2 is Hermitian, its singular values are equal to the absolute
values of its eigenvalues (see Real Spectral Theorem, 7.29 in [1], and Theorem
5.5 in [6]). In this case, all the eigenvalues are non-negative because nonzero
eigenvalues of (PB − PA)2 are squares of singular values of PB − PA meaning
singular values and eigenvalues of (PB − PA)2 are the same.

Let us now look at the singular values of (PB − PA)2. By Lemma 2 we
know that singular values of a block diagonal matrix are equal to the singular
values of the blocks. We can thus observe the singular values of the two blocks
of (PB − PA)2: F ∗2 F2(I + F ∗2 F2)−1 and F2(I + F ∗2 F2)−1F ∗2 . Below we give an
expression for the largest singular value of F ∗2 F2(I + F ∗2 F2)−1:

σ1(F ∗2 F2(I + F ∗2 F2)−1) = ‖F ∗2 F2(I + F ∗2 F2)−1‖2
≤ ‖F ∗2 ‖2‖F2‖2‖(I + F ∗2 F2)−1‖2

=
σ1(F2)2

1 + σm−n(F2)2

(72)

with σ1(F2) being the largest singular value of F2 and σm−n(F2) being the
smallest singular value of F2.

We obtained (72) by using ‖(I + F ∗2 F2)−1‖2= 1
1+σm−n(F2)2

which we derive

below.
Since (I + F ∗2 F2)∗ = I + F ∗2 F2, I + F ∗2 F2 is Hermitian and so is its inverse.

This means that for both I + F ∗2 F2 and (I + F ∗2 F2)−1 their singular values are
equal to the absolute values of their eigenvalues (see [6], Theorem 5.5). Since
F ∗2 F2 is a positive semi-definite matrix, all of its eigenvalues are non-negative
and thus all the eigenvalues of I + F ∗2 F2 (see Lemma 3) are non-negative too.
Since eigenvalues of I + F ∗2 F2 are nonnegative and equal in absolute value to
its singular values we have the equality of singular values and eigenvalues. By
Lemma 4 we can conclude that all the eigenvalues of (I + F ∗2 F2)−1 are also
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non-negative and thus equal to the singular values of (I + F ∗2 F2)−1. By the
equality of singular values to eigenvalues and Lemma 4 we get:

σ1((I + F ∗2 F2)−1) =
1

σm−n(I + F ∗2 F2)
(73)

where σm−n is the smallest singular value of I + F ∗2 F2.
We know that eigenvalues of F ∗2 F2 equal square of singular values of F2. By

that fact and Lemma 3 we get that eigenvalues of I + F ∗2 F2 are 1 + σi(F2)2.
By equality of singular values and eigenvalues of I + F ∗2 F2 we know that the
smallest singular value of I + F ∗2 F2 is 1 + σm−n(F2)2. By applying this to the
expression (73) we get:

σ1((I + F ∗2 F2)−1) = ‖(I + F ∗2 F2)−1‖2=
1

1 + σm−n(F2)2
(74)

which is what we use in equation (72).
Similarly we have:

σ1(F2(I + F ∗2 F2)−1F ∗2 ) = ‖F2(I + F ∗2 F2)−1F ∗2 ‖2
≤ ‖F2‖2‖(I + F ∗2 F2)−1‖2‖F ∗2 ‖2

=
σ1(F2)2

1 + σm−n(F2)2

(75)

We know that:

σ1((PB − PA)2) = max(σ1(F ∗2 F2(I + F ∗2 F2)−1), σ1(F2(I + F ∗2 F2)−1F ∗2 ))

≤ σ1(F2)2

1 + σm−n(F2)2
≤ σ1(F2)2

(76)

From there we get:

‖PB − PA‖2= σ1(PB − PA) =
√
σ1((PB − PA)2) ≤

√
σ1(F2)2 = σ1(F2) (77)

We have:
σ1(F2) = ‖F2‖2= ‖E2B

−1
1 ‖2≤ ‖B

−1
1 ‖2‖E2‖2 (78)

By combining expressions (77) and (78) and using Theorem 3 we get:

‖PB − PA‖2≤
‖A−11 ‖2

γ
‖E2‖2=

κ(A)

γ

‖E2‖2
‖A‖2

(79)

with γ = 1 − ‖A+‖2‖E1‖2= 1 − ‖A−11 ‖2‖E1‖2 and κ(A) = ‖A+‖2‖A‖2=
‖A−11 ‖2‖A‖2.

Now by putting (79) and (64) together and by the fact that ‖E2‖2≤ ‖E‖2
we get:
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‖δy‖2
‖y‖2

/
‖E‖2
‖A‖2

≤ κ(A)

γ

1

cos θ
(80)

We can use this to bound the condition number. γ → 1 when ‖E‖→ 0 so
we have:

κA→y = lim
δ→0

sup
‖E‖2≤δ

‖δy‖2
‖y‖2

/
‖E‖2
‖A‖2

≤ lim
δ→0

sup
‖E‖2≤δ

κ(A)

γ

1

cos θ
=
κ(A)

cos θ
(81)

We have thus obtained the upper bound for κA→y: κ(A)
cos θ .

3.5 Sensitivity of x to Perturbations in A

Let us have x = A+b and x+ δx = B+b where B = A+ E and E is chosen so
‖A+‖‖E‖< 1. First we will prove that we can bound the relative perturbation
of x like this:

‖δx‖2
‖x‖2

≤ κ(A)

γ

‖E1‖2
‖A‖2

+
κ(A)2

γ2
‖E2‖2
‖A‖2

(
1

η

‖b2‖2
‖b1‖2

+
1

γ

‖E2‖2
‖A‖2

)
(82)

where κ(A) = ‖A+‖2‖A‖2, γ = 1− ‖A+‖2‖E1‖2 and η = ‖A‖2‖x‖2/‖Ax‖2.
The proof and the claim are taken and slightly adapted from [5].
Since our end goal is to obtain a conditioning number we are focusing on

the behaviour of the output for small perturbations of the input (condition
‖A+‖2‖E‖2< 1). Because of this condition we have ‖A+‖2‖E1‖2≤ 1 (section
3.3.4) so we can use the derivation of B+ from Theorem 4.

Let us rewrite δx as:

δx = B+b− x = B+b−A+b = B−11

(
I
F2

)+

b−A−11 b1 (83)

(84)

δx = B−11

(
I
F2

)
+b−B−11 b1 +B−11 b1 −A−11 b1

= B−11

(
I
F2

)
+b−B−11

(
I 0

)
b+ (B−11 −A−11 )b1

= B−11 (

(
I
F2

)
+ −

(
I 0

)
)b+ (B−11 −A−11 )b1

Let us observe the two terms separately. By Theorem 3 we have the following
expression for the inverse of B1:

B−11 = (I −A−11 E)A−11 (85)
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We can write:

‖(B−11 −A−11 )b1‖2 = ‖((I −A−11 E)−1A−11 −A
−1
1 )A1x‖2

= ‖((I −A−11 E)−1 − I)x‖2
≤ ‖((I −A−11 E)−1 − I)‖2‖x‖2

(86)

By Lemma 1 this translates to:

(87)‖(B−11 −A−11 )b1‖2 ≤
‖A−11 E1‖2

1− ‖A−11 E1‖2
‖x‖2 ≤

‖A−11 ‖2‖E1‖2
1− ‖A−11 ‖2‖E1‖2

‖x‖2

We have ‖A+‖2= ‖A−1‖2 (see section 3.3.3 for proof) so we can write:

(88)‖(B−11 −A−11 )b1‖2 ≤
κ(A)

γ

‖E1‖2
‖A‖2

‖x‖2

The first term is more complicated. We will split it up further in two parts:

B−11 (

(
I
F2

)
+ −

(
I 0

)
)b = B−11 ((I + F ∗2 F2)−1

(
I F ∗2

)
−
(
I 0

)
)

(
b1
b2

)
= B−11 ((I + F ∗2 F2)−1(b1 + F ∗2 b2)− b1)

= B−11 ((I + F ∗2 F2)−1 − I)b1 +B−11 (I + F ∗2 F2)−1F ∗2 b2

(89)

Let us observe the first part of (89):

(90)‖B−11 ((I + F ∗2 F2)−1 − I)b1‖2 = ‖B−11 (I + F ∗2 F2)−1F ∗2 F2b1‖2

From expression (74) we know that ‖(1 +F ∗2 F2)−1‖2= 1
1+σm−n(F2)2

≤ 1 and

from (58) we have x = A−11 b1 so we can write:

‖B−11 ((I + F ∗2 F2)−1 − I)b1‖2 ≤ ‖B−11 ‖2‖F2‖2‖F2b1‖2
≤‖B−11 ‖22‖E2‖2‖E2B

−1
1 b1‖2

≤‖B−11 ‖22‖E2‖22‖(I +A−11 E1)−1A−11 b1‖2
≤‖B−11 ‖22‖E2‖22‖(I +A−11 E1)−1‖2‖x‖2

(91)

By Lemma 1 and Theorem 3 we can further write:

‖B−11 ((I + F ∗2 F2)−1 − I)b1‖2 ≤ ‖A−11 ‖22‖E2‖22‖x‖2/γ3

=
κ(A)2

γ3
‖E2‖22
‖A‖22

‖x‖2
(92)

Onto the second term of (89) where we use some of the same substitutions:
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‖B−11 (I + F ∗2 F2)−1F ∗2 b2‖2 ≤
‖A−11 ‖22
γ2

‖E2‖2‖b2‖2

=
κ(A)2

γ2
‖E2‖2
‖A‖22

‖b2‖2
1

η

‖A‖2‖x‖2
‖b1‖2

=
1

η

κ(A)2

γ2
‖b2‖2
‖b1‖2

‖x‖2
‖E2‖2
‖A‖2

(93)

Putting together expressions in (88), (92) and (93) we get the expression
(82).

Now we shall adapt the expression (82) to get an upper bound for condition
number for changes in x given perturbations of A.

By using the fact that ‖E1‖2≤ ‖E‖2 and ‖E2‖2≤ ‖E‖2 as well as making
the substitution tan θ = ‖b2‖2/‖b1‖2 in expression (82) we get the upper bound:

‖δx‖2
‖x‖2

/
‖E‖2
‖A‖2

≤ κ(A)

γ
+
κ(A)2

γ2
(
1

γ

‖E‖2
‖A‖2

+
1

η
tan θ) (94)

We get the bound for the condition number κA→x by observing the bound
(94) for small ‖E‖2:

κA→x = lim
δ→0

sup
‖E‖2≤δ

‖δx‖2
‖x‖2

/
‖E‖2
‖A‖2

≤ lim
δ→0

sup
‖E‖2≤δ

(
κ(A)

γ
+
κ(A)2

γ2
(
1

γ

‖E‖2
‖A‖2

+
1

η
tan θ))

= κ(A) +
κ(A)2

η
tan θ

(95)

We get the final sum in (95) because γ → 0 when ‖E‖2→ 0. We also lose
the first part of the second term because it contains the factor ‖E‖2→ 0.

4 Appendix

Lemma 2. Singular values of a block diagonal matrix are equal to the singular
values of individual blocks.

Proof. Let A =

B1 · · · 0
...

. . .
...

0 · · · Bk

 with Bi being matrix blocks and Bi = UiΣiV
∗
i

being a singular value decomposition of each block. We can write:
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A =

U1Σ1V
∗
1 · · · 0

...
. . .

...
0 · · · UkΣkV

∗
k


=

U1 · · · 0
...

. . .
...

0 · · · Uk


Σ1 · · · 0

...
. . .

...
0 · · · Σk


V1 · · · 0

...
. . .

...
0 · · · Vk


∗ (96)

By setting U =

U1 · · · 0
...

. . .
...

0 · · · Uk

, Σ =

Σ1 · · · 0
...

. . .
...

0 · · · Σk

 and V =

V1 · · · 0
...

. . .
...

0 · · · Vk


we get a singular value decomposition of A = UΣV ∗. We can do this because
U and V are unitary matrices. We would also need to order singular values in
descending order and reorder the columns of U and V accordingly. From this
decomposition we see that the singular values of A are equal to the singular
values of individual blocks Bi.

Lemma 3. Let A be a matrix of dimensions n × n. For any µ ∈ C, λi + µ is
an eigenvalue of A+ µI if and only if λi is an eigenvalue of A.

Proof. Let us look at the eigenvalues of A. We have Avi = λivi. From there we
get (A + µI)vi = Avi + µv = (λi + µ)v for every eigenvalue λi-eigenvector vi
pair of A. So we have proven that if λi is an eigenvalue of A then λi + µ is an
eigenvalue of A+ µI.

Now onto the other direction. Let us observe the eigenvalues of A+ µI. We
have (A+µI)vi = δivi for every eigenvalue δi-eigenvector vi pair of A+µI. We
can write Avi = δivi − µvi = (δi − µ)vi. We see that for every eigenvalue δi
of A + µI we have an eigenvalue of A that is equal to δi − µ. If we name that
eigenvalue λi = δi − µ we have δi = λi + µ and we have thus proven the second
direction of the iff statement.

Lemma 4. Let A be a nonsingular matrix. λi is an eigenvalue of A if and only
if 1/λi is an eigenvalue of A−1.

Proof. For all eigenvalues of A we have Avi = λivi. If we multiply both sides
of the equation by A−1 we get vi = λiA

−1vi. We can rewrite that as A−1vi =
(1/λi)vi. From here we see that if λi is an eigenvalue of A then 1/λi is an
eigenvalue of A−1. Since A is an inverse of A−1 this implies that for every
eigenvalue δi of A−1 there exist an eigenvalue 1/δi of A. If we set λi = 1/δi
we get δi = 1/λi. Thus we have proven that for every eigenvalue 1/λi of A−1

there exists an eigenvalue λi of A. We have now proven both directions of the
iff statement.
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Lemma 5. Let P1 and P2 be orthogonal projectors onto some subspace S ⊆
Cn×n. Then, P1 = P2.

Proof. The idea for the proof was taken from [4]. We have:

∀x P1x = xS , P2x = xS (97)

where xS is an orthogonal projection of vector x onto subspace S. We can
write:

(P1 − P2)x = xS − xS = 0 ∀x ∈ Cn (98)

We want to prove that (98) implies that P1 − P2 = 0. Let us assume
P1 − P2 6= 0. This means that there is a nonzero column in P1 − P2. We now
pick any x ∈ Cn. We have (P1 − P2)x = 0. Let us now observe y that is equal
to x for all entries except for an entry i for which i-th column of P1 − P2 is
nonzero. Let us set that entry to yi = xi + 1. Let us denote i-th column of
P1 − P2 as (P1 − P2)i. We get:

(P1 − P2)y = (P1 − P2)x+ (P1 − P2)i = (P1 − P2)i 6= 0 (99)

Since (P1 − P2)y must be 0, we got contradiction. Hence all the columns of
(P1 − P2) must be 0 and P1 − P2 must be a zero matrix. Therefore P1 = P2

Lemma 6. Let A be a matrix and A+ its pseudoinverse. Then PA = AA+ is
a unique orthogonal projector onto the range of A.

Proof. First we will prove that PA = AA+ is a projector:

PAPA = AA+AA+ = AA+ = PA (100)

We used one of the Moore-Penrose conditions for pseudoinverses above (AA+A =
A).

Necessary and sufficient conditon for a projector PA to be an orthogonal
projector is P ∗A = PA (see [6], Lecture 6):

P ∗A = (AA+)∗ = AA+ = PA (101)

Here we used another Moore-Penrose conditon for pseudoinverses: (AA+)∗ =
AA+.

We know that the every vector v in the range(PA) is also in the range of A:

v = PAx = AA+x = Ay, y = A+x (102)

We can also show that every vector in the range of A is also in the range
of PA. For that we use the previously mentioned Moore-Penrose condition for
pseudoinverses: AA+A = A.

PAA = AA+A = A⇒ ∀ai, PAai = ai (103)
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where ai are columns of A. Since each vector in the range of A can be
expressed using columns of PA and vice versa we have range(A) = range(PA)
so PA is a projector onto the column space of A.

So far we have proven that PA = AA+ is an orthogonal projector onto
range(A). By Lemma 5 we know that it is also unique.

References

[1] Sheldon Jay Axler. Linear Algebra Done Right. Undergraduate Texts in
Mathematics. Springer, New York, 1997.

[2] D.N. Pandey. Convergent matrices - i, 2018. Available at
https://youtu.be/ucAIzQm9˙kg.

[3] D.N. Pandey. Convergent matrices - ii, 2018. Available at
https://youtu.be/WFEJPkyzZ88.

[4] rschwieb. Uniqueness of orthogonal projector, 2016. Avail-
able at https://math.stackexchange.com/questions/1937327/uniqueness-of-
orthogonal-projector.

[5] G.W. Stewart. On the Perturbation of Pseudo-Inverses, Projections and
Linear Least Squares Problems. Defense Technical Information Center, 1975.

[6] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

21


