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1 Theorems

Theorem 1. (Theorem 2.3, part 1 in [3]) For any matrix A and B the following
statement is true.

Let PA be orthogonal projector onto the range of A and let PB be orthogonal
projector onto the range of B. If rank(A) = rank(B):

1. The singular values of PAP
⊥
B and PBP

⊥
A are the same.

2. The nonzero singular values σi of PAP
⊥
B correspond to pairs ±σi of eigen-

values of PB − PA, so that

‖PB − PA‖2 = ‖PAP⊥B ‖2 = ‖PBP⊥A ‖2 (1)

Theorem 2. (Theorem 2.3, part 2 in [3]) For any two matrices Am×n and
Bm×l and two orthogonal projectors PA and PB onto the ranges of A and B
respectively we have:

‖PB − PA‖2 < 1⇒ rank(A) = rank(B) (2)

1.1 Auxiliary Proofs

Lemma 1. Let X and Y be subspaces of Cn and PX , PY orthogonal projections
onto X and Y , respectively. σi is a singular value of PXPY if and only if σ2

i is
an eigenvalue of PXPY .

∗This work resulted from me reading [3] and trying to understand all the steps. The
theorems stated here are stated but not proven in [3]. Instead, references are cited for the
proofs. I went through some of the references and presented the proofs here. Some proofs
follow the proofs in the references closely, some rely on the knowledge I gained from the
references and adapted into my own proofs.
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Proof. This proof was taken from [5] and slightly expanded.
We are going to prove the lemma in two parts. First, we will prove that if

σi is a singular value of PXPY then λi = σ2
i is an eigenvalue of PXPY . Then

we shall prove that for each eigenvalue λi of PXPY there is a singular value
σi =

√
λi of PXPY .

• First direction

We know that singular values of a matrix A are square roots of eigenvalues
of matrix A∗A or AA∗. In other words:

PXPY (PXPY )∗v = σ2
i · v (3)

for some eigenvector v of PXPY (PXPY )∗.

We have:

PXPY (PXPY )∗v = PXPY P
∗
Y P
∗
Xv = PXPY PXv = σ2

i v (4)

From expression above we see that, if σi > 0σi > 0σi > 0 v is in the range of PX which
means:

PXPY v = σ2
i v (5)

This shows that for every non-zero singular value σi of PXPY there exists
an eigenvalue σ2

i of PXPY .

Now to complete this direction of the proof we shall show that for every 0
valued singular value of PXPY there is a 0 valued eigenvalue of that same
matrix. We know that in order for PXPY to have a 0 valued singular
value that there has to exist a vector v such that (PXPY )∗PXPY v = 0. If
we multiply the equality with v∗ on the left we get: v∗(PXPY )∗PXPY v =
‖PXPXv‖2 = 0 → PXPY v = 0 which means that v is an eigenvector of
PXPY with eigenvalue 0. Hence, if 0 is a singular value of PXPY it is also
its eigenvalue.

• Second direction We start by showing that for each eigenvalue λi > 0
of PXPY there is a singular value σi =

√
λi of the same matrix:

PXPY v = λi · v (6)

PXPY v = PXPY PXv = PXPY P
∗
Y P
∗
Xv = PXPY (PXPY )∗v = λi · v (7)

Hence, every eigenvector-non zero eigenvalue pair of PXPY is also an
eigenvector-eigenvalue pair of PXPY (PXPY )∗. This means that there is a
singular value σi =

√
λi. In equation (7) we could substitute v with PXv

because for λi 6= 0, v is in range of PX .
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Next we prove that if 0 is an eigenvalue of PXPY that it is also an eigen-
value of (PXPY )∗PXPY . By our assumption we have PXPY v = 0. This
entails (PXPY )∗PXPY v = (PXPY )∗ ·0 = 0 which means that if PXPY has
an eigenvalue λi = 0 then so does (PXPY )∗PXPY . This ends the proof of
the second direction.

Corollary 1.1. Let PX and PY be orthogonal projectors. For each eigenvalue
λi of PXPY we have 0 ≤ λi ≤ 1. Same is true for each singular value of σi of
PXPY , 0 ≤ σi ≤ 1.

Proof. Lemma 1 states that each eigenvalue λi of PXPY corresponds to the
square of a singular value of PXPY : λi = σ2

i ≥ 0 which proves the lower bound.
We can use the fact that for orthogonal projectors ‖PX‖2 = ‖PY ‖2 = 1 to prove
the upper bound:

λi = |λi| = ‖λiv‖2/‖v‖2 = ‖PXPY v‖2/‖v‖2 ≤ ‖PX‖2‖PY ‖2‖v‖2/‖v‖2 = 1 (8)

Thus we have proven 0 ≤ λi ≤ 1. From (8) we get σi =
√
λi ≤ 1 and since

singular values are positive by definition we have 0 ≤ σi ≤ 1

Next, the concept of reciprocal vectors is introduced and some facts about
the reciprocal vectors are stated and proven. This part is taken from [1].

Definition 1.1. Reciprocal vectors Let us observe two orthogonal projectors
PA and PB . Let vector u be in range(PA) and vector v be in range(PB). We
say that vectors u and v are reciprocal to each other and call them a pair of
reciprocal vectors if the following holds: α · u = PAv and β · v = PBu for some
scalars α 6= 0, β 6= 0. In other words, vector u is projected into the ray that
spans vector v and vice versa.

Lemma 2. Any reciprocal vectors u, v in the range of PA and PB are eigenvec-
tors of PAPB and PBPA respectively with eigenvalue cos2 θ where θ represents
the angle between u and v and cos θ = u∗v/(‖u‖2‖v‖2). Also, if u is an eigen-
vector of PAPB for a nonzero eigenvalue cos2 θ then v = PBu is an eigenvector
of PBPA for the same eigenvalue and u and v are reciprocal vectors in column
spaces of PA and PB respectively with angle θ between them.

Proof. Based on the definition of reciprocal vectors we can write:

PAPBu = PAβv = βPAv = βα · u (9)

Similarly we have:

PBPAv = βα · v (10)

We see that each pair of reciprocal vectors corresponds to the eigenvectors of
matrices PAPB and PBPA respectively with corresponding eigenvalue for both
eigenvectors being the same: α · β.
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We can express the eigenvalue in terms of the angle between the two recip-
rocal vectors:

α‖u‖22 = u∗uα = u∗PAv = u∗P ∗Av = (PAu)∗v = u∗v (11)

β‖v‖22 = v∗vβ = v∗PBu = v∗P ∗Bu = (PBv)∗u = v∗u (12)

α · β = (u∗v)2/(‖u‖22‖v‖22) = cos2θ (13)

θ being the angle between the two vectors i.e. the rays they span.
From the equations (9)-(13) we see that each pair of reciprocal vectors cor-

responds to eigenvectors of PAPB and PBPA with eigenvalue cos2θ.
Now we want to prove the second part of the Lemma: that each eigenvector

u of PAPB with nonzero corresponding eigenvalue makes a reciprocal pair of
vectors with an eigenvector v of PBPA with the same nonzero eigenvalue. Let
u be an eigenvector of PAPB with eigenvalue λi: PAPBu = λiu. Let v be
v = PBu. Then we have PAv = PAPBu = λiu and PBPAv = PBλiu = λiv
meaning that v is an eigenvector of PBPA with same eigenvalue and u and v are
reciprocal vectors with α = λi and β = 1. The angle between the two vectors
is by (13) θ = arccos

√
αβ = arccos

√
λi and thus the eigenvalue λi = cos2θ.

To sum up, each eigenvalue λi > 0 of PAPB and PBPA is attached to a pair
of reciprocal vectors for PA and PB .

Lemma 3. Let PX and PY be orthogonal projectors onto some subspaces X
and Y of Cn. 0 < λ′i < 1 is an eigenvalue of PXPY and PY PX if and only if
λi = 1 − λ′i is an eigenvalue of both PXP

⊥
Y and PY P

⊥
X . Note: the condition

0 ≤ λ′i ≤ 1 can be restated as λ′i 6= 0 ∧ λ′i 6= 1 because the interval for possible
eigenvalues for a product of orthogonal projectors is [0, 1] (see Corollary 1.1).

Proof. Let us observe the following for some eigenvalue 0 < λi < 1 of PXP
⊥
Y :

PXP
⊥
Y · v = λi · v (14)

PX(I − PY )v = PXv − PXPY v = λi · v (15)

Since λi > 0 we know that PXv = v so based on equation (15) we can write:

PXPY v = (1− λi)v (16)

We see that v is an eigenvector of PXPY with eigenvalue 1 − λi. Since
(PXPY )∗ = PY PX matrices PXPY and PY PX have the same eigenvalues. In
other words there is an eigenvector u for matrix PY PX such that:

PY PXu = (1− λi)u⇒ u− PY PXu = λiu (17)

Since we are observing 0 < λi < 1, we have 0 < 1 − λi < 1 which means
PY u = u so we can write:
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u− PY PXu = PY u− PY PXu = PY (I − PX)u = PY P
⊥
X = λiu (18)

We have thus proven that any eigenvalue 0 < λi < 1 of PXP
⊥
Y is also an

eigenvalue of PY P
⊥
X and there exists an eigenvalue λ′i = 1 − λi of both PXPY

and PY PX . Similarly, we can start with an eigenvalue λi of PY P
⊥
X and prove

that PXP
⊥
Y has the same eigenvalue and that both PXPY and PY PX have an

eigenvalue λ′i = 1− λi.
Now we need to prove the other direction of our lemma: that for each 0 <

λ′i < 1 eigenvalue of both PXPY and PY PX there is an eigenvalue λi = 1 − λ′i
of both PXP

⊥
Y and PY P

⊥
X :

PXPY v = λ′iv ⇒ PXPY v − PXv = λ′iv − v ⇒ PXP
⊥
Y v = (1− λ′i)v (19)

Similarly we can get PY P
⊥
Xu = (1−λ′i)u where u is an eigenvector of PY PX

associated with the eigenvalue λ′i. We have thus proven that PXP
⊥
Y and PY P

⊥
X

have an eigenvalue λi = 1 − λ′i, 0 < λi < 1, for each eigenvalue 0 < λ′i < 1 of
PXPY and PY PX .

1.2 Theorem Proofs

Proof of Theorem 1, Part 1. Since P⊥A and P⊥B as well as PA and PB are all
orthogonal projectors by Lemma 1 we can compare eigenvalues of PAP

⊥
B and

PBP
⊥
A in lieu of their singular values.

We did a lion’s share of work by proving Lemma 3. By Lemma 3, we know
that PAP

⊥
B and PBP

⊥
A share all eigenvalues 0 < λi < 1. By Lemma 1 we know

that applies to the singular values 0 < σi < 1 of PAP
⊥
B and PBP

⊥
A as well.

Since both PAP
⊥
B and PBP

⊥
A are products of orthogonal projectors, their

singular values are in range 0 ≤ σi ≤ 1 (see Corollary 1.1). We have proven
that PAP

⊥
B and PBP

⊥
A share all the singular values in the range 0 < σi < 1.

What is left to prove is that both matrices have the same number of singular
values with value 1. We can analyze the trace of matrices PAP

⊥
B and PBP

⊥
A to

prove this.
We know that the trace of a matrix is equal to the sum of its eigenvalues.1

We also know that all the eigenvalues of any orthogonal projector P are either
0 or 1. We can verify that by observing the singular value decomposition of an
orthogonal projector (see [4], proof of Theorem 6.1) which is also its eigenvalue
decomposition. These two facts imply trace(P ) = rank(P ) for any orthogonal
projector P .

1This can be derived from the fact that each matrix can be written in the Jordan canon-
ical form (see [2]) A = SJS−1 where J has eigenvalues on its diagonal and the fact that
trace(AB) = trace(BA). The equality trace(AB) = trace(BA) can be proven by simply
writing out the sums that correspond to the traces of matrices AB and BA and rearranging
them to be in the same form. By using the equality trace(AB) = trace(BA) we can write
trace(A) = trace(SJS−1) = trace(S−1SJ) = trace(J) =

∑
i
λi where λi are eigenvalues of A.

For orthogonal projectors we could use the eigenvalue decomposition to prove the fact that
trace(P ) =

∑
i
λi. By using the Jordan canonical form we get a more general result.
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We can write:

rank(A) = trace(PA) = trace(PA(PB + P⊥B ))

= trace(PAPB)− trace(PAP⊥B )
(20)

rank(B) = trace(PB) = trace(PB(PA + P⊥A ))

= trace(PBPA)− trace(PBP⊥A )
(21)

We know that (PAPB)∗ = PBPA ⇒ trace(PAPB) = trace(PBPA). Theorem
1. assumes rank(A) = rank(B). Based on this and the equations (20) and (21)
we get:

trace(PAP
⊥
B ) = trace(PBP

⊥
A ) (22)

Let us delve deeper into equation (22). We denote the number of eigenvalues
with value 1 of matrix PAP

⊥
B as nAB⊥ and for matrix PBP

⊥
A as nBA⊥ . We can

write:

trace(PAP
⊥
B ) =

∑
λi 6=1

λi(PAP
⊥
B ) + nAB⊥ · 1 (23)

trace(PBP
⊥
A ) =

∑
λi 6=1

λi(PBP
⊥
A ) + nBA⊥ · 1 (24)

We know that PAP
⊥
B and PBP

⊥
A have the same eigenvalues in range 0 <

λi < 1, hence
∑
λi 6=1 λi(PAP

⊥
B ) =

∑
λi 6=1 λi(PBP

⊥
A ). From this we get nAB⊥ =

nBA⊥ , i.e. PAP
⊥
B and PBP

⊥
A have exactly the same number of eigenvalues with

value 1 and therefore by Lemma 1 also the same number of singular values with
value 1. Hence, all the singular values of PAP

⊥
B and PBP

⊥
A are the same.

Proof of Theorem 1, Part 2. The second part of our theorem states that all
nonzero eigenvalues of PA − PB ±σi correspond to singular values σi of PAP

T
B

and PBP
T
A and vice versa.

This proof is split in two parts. The first part is about proving the statement
for eigenvalues λi 6= ±1 of PB − PA and the second part focuses on the case
when λi = ±1.

• |λi| 6= 1

We prove this part by showing that a vector v is an eigenvector of PA−PB
with eigenvalues satisfying this condition if and only if v is a difference
of reciprocal vectors of PA and PB . Then we give an expression for the
associated eigenvalue.

Let us try to construct eigenvectors of PA−PB from reciprocal vectors of
PA and PB .
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We know from the Definition 1.1 of the reciprocal vectors u and v that
αu = PAv and βv = PBu. Let us see whether we can tune α and β so that
the difference of two reciprocal vectors u− v is an eigenvector of PA−PB .

(PA − PB) · (u− v) = u− αu− βv + v = (1− α)u− (β − 1)v (25)

In order for u− v to be an eigenvector of PA − PB we need to find α and
β such that the following holds:

1− α = β − 1 = λi (26)

where λi would be the eigenvalue associated with the eigenvector u− v.

From Lemma 2 we know that there is an nonzero eigenvalue λ′i of PAPB
with value λ′i = αβ = cos2θ.

In order for u−v to be an eigenvector of PA−PB we need to have α = 2−β
(see (26)). We get:

αβ = (2− β)β = λ′i (27)

β2 − 2β + λ′i = 0 (28)

β =
(2±

√
4− 4λ′i)

2
= 1±

√
1− λ′i (29)

From there we have:

λi = β − 1 = ±
√

1− λ′i (30)

From Lemma 3 and the fact that λ′i = 1−λ2i 6= 0, 1 because we are looking
at λi 6= 0, 1 we know that there is an eigenvalue λi” of both PAP

⊥
B and

PBP
⊥
A such that λi” = 1− λ′i. Using that and Lemma 1 we can write:

λi = ±
√
λi” = ±σi (31)

with σi being any nonzero singular value of PAP
⊥
B and PBP

⊥
A such that

σi 6= 1.

To complete this part of the proof, we need to prove that each nonzero
eigenvalue λi of PA−PB s.t. |λi| 6= 1 is associated with an eigenvector that
is a difference of two reciprocal vectors of PA and PB . This is necessary to
establish that PA − PB does not have any additional eigenvalues λi 6= ±1
that are not equal to ±σi for some singular value σi of PAP

⊥
B and PBP

⊥
A .

For each eigenvector v of PA − PB with eigenvalue λi, s.t. λi 6= 0 we can
write PAv − PBv = λiv. From there we can get v = PAv/λi − PBv/λi.
Hence, if PAv and PBv are reciprocal vectors, v is a difference of two
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reciprocal vectors of PA and PB . We now prove that PAv and PBv are in
fact reciprocal vectors when |λi| 6= 1.

We need to find α, β > 0 such that αPAv = PAPBv and βPBv = PBPAv.
We can find such α and β by multiplying PAv − PBv = λiv by PA or PB
respectively. In case of PA we get:

(1− λi) · PAv = PAPBv (32)

When multiplying by PB we get:

(1 + λi) · PBv = PBPAv (33)

We have found α = 1 − λi and β = 1 + λi which are both nonzero when
|λi| 6= 1 which proves that PAv and PBv are reciprocal vectors for any
eigenvector v of PA − PB that is associated with an eigenvalue |λi| 6= 1.
Hence, all eigenvectors of PA − PB with nonzero eigenvalues |λi| 6= 1 are
a difference of two reciprocal vectors.

• λi = ±1

Next we want to prove that PA−PB has eigenvalues with value ±1 if and
only if PAP

⊥
B and PBP

⊥
A have singular values σi = 1.

First we prove that if PAP
⊥
B and PBP

⊥
A have eigenvalues 1 that PA − PB

has eigenvalues ±1.

PAP
⊥
B v = v ⇒ ‖PAP⊥B v‖2 = ‖v‖2 (34)

‖v‖2 = ‖PAP⊥B v‖2 ≤ ‖PA‖2‖P⊥B v‖2 ≤ ‖P⊥B v‖2 (35)

‖P⊥B v‖2 ≤ ‖P⊥B ‖2‖v‖2 = ‖v‖2 (36)

‖v‖2 ≤ ‖PBv⊥‖2 ≤ ‖v‖2 ⇒ ‖P⊥B v‖2 = ‖v‖2 (37)

Since P⊥B is an orthogonal projector we know that for any vector v we
have ‖PBv‖22 + ‖P⊥B v‖22 = ‖v‖22. From there and equation (37) we get
‖PBv‖2 = 0 ⇒ PBv = 0 ∧ P⊥B v = v. This reduces the eigenvector-
eigenvalue expression from equation (34) to PAv = v. For this eigenvector
v we can write PAv − PBv = v − 0 = v which means that v is also an
eigenvector of PA − PB with eigenvalue 1.

We have proven earlier that when PA and PB have same rank, then PAP
⊥
B

and PBP
⊥
A they have the same number of eigenvalues with value 1. Using

similar reasoning as above, eigenvector u of PBP
⊥
A with associated eigen-

value 1 is in the range of PB and is orthogonal to the range of PA. This
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would lead to (PA − PB)u = PAu− PBu = 0− u = −u which means that
for each eigenvalue 1 of PBP

⊥
A , PA−PB has eigenvalue −1 associated with

the same eigenvector u. Therefore, for any singular value 1 of both PAP
⊥
B

and PBP
⊥
A we have ±1 eigenvalues of PA − PB .

Now we need to prove that PA−PB has eigenvalues ±1 only when PAP
⊥
B

and PBP
⊥
A have eigenvalues 1 to avoid cases where PA − PB would have

eigenvalues±1 without corresponding eigenvalues/singular values for PAP
⊥
B

and PBP
⊥
A .

Let us observe vector v that is an eigenvector of PA −PB with eigenvalue
1. The following holds: PAv − PBv = v ⇒ −PBv = P⊥A v. From there we
have:

P⊥B v − v = P⊥A v (38)

If we multiply both sides of the equation with (P⊥A v)∗ on the left side we
get:

(P⊥A v)∗P⊥B v − (P⊥A v)∗v = (P⊥A v)∗P⊥A v

− (PBv)∗P⊥B v − v∗P⊥∗A P⊥A v = (P⊥A v)∗P⊥A v

− v∗PBP⊥B v − (P⊥A v)∗P⊥A v = (P⊥A v)∗P⊥A v

2 · (P⊥A v)∗P⊥A v = 0⇒ P⊥A v = PBv = 0

(39)

From the result in (39) we see that PA − PB has eigenvalue 1 only for an
eigenvector v that is in range of PA and is orthogonal to the range of PB .
Such a vector is also an eigenvector of PAP

⊥
B with eigenvalue 1.

Using a similar approach we can prove that if a vector u is an eigenvector
of PA − PB with eigenvalue −1 then it is also an eigenvector of PBP

⊥
A

with eigenvalue 1. From that and Lemma 1 we now know that for each
eigenvalue pair ±1 of PA − PB there is a singular value 1 of both PAP

⊥
B

and PBP
⊥
A .

We have proven that nonzero singular values σi of PAP
⊥
B and PBP

⊥
A corre-

spond to pairs of ±σi of eigenvalues of PB −PA. Since PB −PA is a Hermitian
matrix, absolute values of its eigenvalues are equal to its singular values (see [4],
Theorem 5.5.) so we have:

‖PA − PB‖2 = ‖PAP⊥B ‖2 = ‖PBP⊥A ‖2 (40)

Proof. Proof of Theorem 2 We will prove this by proving the contrapositive.
That is, that rank(A) 6= rank(B)⇒ ‖PB − PA‖2 ≥ 1.

Let us assume without loss of generality that rank(A) > rank(B). We know
that dim(range(A)) = dim(range(PA)) and dim(range(B)) = dim(range(PB)).
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Let the dimension of column space of B be p and of column space of A be p+ k
for some k > 0. We know that the dimension of the subspace orthogonal to the
range of B is m − p where m is the number of rows of matrices A and B. We
have dim(range(A)) + dim(range(P⊥B )) = p + k + m− p = m + k with k > 0.
This means that the intersection of range of A and the subspace orthogonal to
the range of B is a non-empty set. If we pick a vector v from that intersection
we get:

‖(PB − PA)v‖2 = ‖PBv − PAv‖2 = ‖0− v‖2 = ‖v‖2 ⇒

⇒ ‖PB − PA‖2 ≥
‖(PB − PA)v‖2

‖v‖2
= 1

(41)

We arrive to the same conclusion if we start with rank(B) > rank(A).
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